Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique.
نویسندگان
چکیده
We characterized the influence of conductance changes on whole-cell patch clamp capacitance measurements with a lock-in amplifier and the limitations of the phase-tracking method by numerical computer simulations, error formulas, and experimental tests. At correct phase setting, the artifacts in the capacitance measurement due to activation of linear conductances are small. The cross talk into the capacitance trace is well approximately by the second-order term in the Taylor expansion of the admittance. In the case of nonlinear current-voltage relationships, the measured conductance corresponds to the slope conductance in the range of the sine wave amplitude, and the cross talk into the capacitance trace corresponds to the second-order effect of the slope conductance. The finite gating kinetics of voltage-dependent channels generate phase-shifted currents. These lead to major artifacts in the capacitance measurements when the angular frequency of the sine wave is close to the kinetic rate constant of the channel. However, when the channel kinetics are sufficiently slow, or sufficiently fast, the cross talk is still close to the second-order effect of the measured conductance. The effects of activation of voltage-dependent currents on the capacitance measurements may be estimated, provided a detailed characterization of the kinetics and voltage dependence is available. A phase error of the lock-in amplifier of a few degrees leads to significant projections. The phase-tracking method can be used to keep the phase aligned only during periods of low membrane conductance. However, nonideal properties of the equivalent circuit, in particular the fast capacitance between the pipette and the bath solutions, may lead to large phase errors when the phase-tracking method is used, depending on the electrical properties of the cell. In this article we provide practical values, setting the range where possible artifacts are below defined limits. For proper evaluation of capacitance measurements, the capacitance and conductance traces should always be displayed together.
منابع مشابه
Phase tracking: an improved phase detection technique for cell membrane capacitance measurements.
We describe here a technique called phase tracking that greatly improves the accuracy of measurements of the membrane capacitance of single cells. We have modified the original phase detection technique to include a method for creating calibrated changes in the resistance in series with the cell. This provides a method to automate the adjustment of the phase detector to the appropriate phase an...
متن کاملMeasurement of the cell membrane capacitance and conductance of colonic crypt cells of the rat using the patch clamp technique
Using the patch clamp technique the membrane capacitance and membrane conductance of colonic crypt cells of the rat was measured. The influence of the intracellular agonists Ca++, cAMP and of osmotic changes on the membrane capacitance and conductance was studied.
متن کاملRobust, high-resolution, whole cell patch-clamp capacitance measurements using square wave stimulation.
High-resolution, whole cell capacitance measurements are usually performed using sine wave stimulation using a single frequency or a sum of two frequencies. We present here a high-resolution technique for whole-cell capacitance measurements based on square-wave stimulation. The square wave represents a sum of sinusoidal frequencies at odd harmonics of the base frequency, the amplitude of which ...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملVoltage-dependent membrane capacitance in rat pituitary nerve terminals due to gating currents.
We investigated the voltage dependence of membrane capacitance of pituitary nerve terminals in the whole-terminal patch-clamp configuration using a lock-in amplifier. Under conditions where secretion was abolished and voltage-gated channels were blocked or completely inactivated, changes in membrane potential still produced capacitance changes. In terminals with significant sodium currents, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 69 6 شماره
صفحات -
تاریخ انتشار 1995